Mathematics – Functional Analysis
Scientific paper
1993-02-09
Mathematics
Functional Analysis
Scientific paper
In this paper, we completely settle several of the open questions regarding the relationships between the three most fundamental forms of set convergence. In particular, it is shown that Wijsman and slice convergence coincide precisely when the weak star and norm topologies agree on the dual sphere. Consequently, a weakly compactly generated Banach space admits a dense set of norms for which Wijsman and slice convergence coincide if and only if it is an Asplund space. We also show that Wijsman convergence implies Mosco convergence precisely when the weak star and Mackey topologies coincide on the dual sphere. A corollary of these results is that given a fixed norm on an Asplund space, Wijsman and slice convergence coincide if and only if Wijsman convergence implies Mosco convergence.
Borwein Jonathan M.
Vanderwerff J.
No associations
LandOfFree
Dual Kadec-Klee norms and the relationships between Wijsman, slice and Mosco convergence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dual Kadec-Klee norms and the relationships between Wijsman, slice and Mosco convergence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual Kadec-Klee norms and the relationships between Wijsman, slice and Mosco convergence will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-635253