Computer Science – Information Theory
Scientific paper
2010-05-25
Computer Science
Information Theory
To Appear on the IEEE Transaction on Signal Processing
Scientific paper
Distributed power control over interference limited network has received an increasing intensity of interest over the past few years. Distributed solutions (like the iterative water-filling, gradient projection, etc.) have been intensively investigated under \emph{quasi-static} channels. However, as such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under \emph{time-varying} channels is in general unknown. In this paper, we shall investigate the distributed scaled gradient projection algorithm (DSGPA) in a $K$ pairs multicarrier interference network under a finite-state Markov channel (FSMC) model. We shall analyze the \emph{convergence property} as well as \emph{tracking performance} of the proposed DSGPA. Our analysis shows that the proposed DSGPA converges to a limit region rather than a single point under the FSMC model. We also show that the order of growth of the tracking errors is given by $\mathcal{O}\(1 \big/ \bar{N}\)$, where $\bar{N}$ is the \emph{average sojourn time} of the FSMC. Based on the analysis, we shall derive the \emph{tracking error optimal scaling matrices} via Markov decision process modeling. We shall show that the tracking error optimal scaling matrices can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed DSGPA over three baseline schemes, such as the gradient projection algorithm with a constant stepsize.
Cheng Yong
Lau Vincent K. N.
No associations
LandOfFree
Distributive Power Control Algorithm for Multicarrier Interference Network over Time-Varying Fading Channels - Tracking Performance Analysis and Optimization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Distributive Power Control Algorithm for Multicarrier Interference Network over Time-Varying Fading Channels - Tracking Performance Analysis and Optimization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributive Power Control Algorithm for Multicarrier Interference Network over Time-Varying Fading Channels - Tracking Performance Analysis and Optimization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-297151