Computer Science – Information Theory
Scientific paper
2008-08-19
Computer Science
Information Theory
Scientific paper
In this work, we consider a distributed source coding problem with a joint distortion criterion depending on the sources and the reconstruction. This includes as a special case the problem of computing a function of the sources to within some distortion and also the classic Slepian-Wolf problem, Berger-Tung problem, Wyner-Ziv problem, Yeung-Berger problem and the Ahlswede-Korner-Wyner problem. While the prevalent trend in information theory has been to prove achievability results using Shannon's random coding arguments, using structured random codes offer rate gains over unstructured random codes for many problems. Motivated by this, we present a new achievable rate-distortion region for this problem for discrete memoryless sources based on "good" structured random nested codes built over abelian groups. We demonstrate rate gains for this problem over traditional coding schemes using random unstructured codes. For certain sources and distortion functions, the new rate region is strictly bigger than the Berger-Tung rate region, which has been the best known achievable rate region for this problem till now. Further, there is no known unstructured random coding scheme that achieves these rate gains. Achievable performance limits for single-user source coding using abelian group codes are also obtained as parts of the proof of the main coding theorem. As a corollary, we also prove that nested linear codes achieve the Shannon rate-distortion bound in the single-user setting.
Krithivasan Dinesh
Pradhan Sandeep S.
No associations
LandOfFree
Distributed Source Coding using Abelian Group Codes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Distributed Source Coding using Abelian Group Codes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed Source Coding using Abelian Group Codes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-608577