Computer Science – Distributed – Parallel – and Cluster Computing
Scientific paper
2010-10-12
Computer Science
Distributed, Parallel, and Cluster Computing
Scientific paper
We study the {edge-coloring} problem in the message-passing model of distributed computing. This is one of the most fundamental and well-studied problems in this area. Currently, the best-known deterministic algorithms for (2Delta -1)-edge-coloring requires O(Delta) + log-star n time \cite{PR01}, where Delta is the maximum degree of the input graph. Also, recent results of \cite{BE10} for vertex-coloring imply that one can get an O(Delta)-edge-coloring in O(Delta^{epsilon} \cdot \log n) time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta log n) time, for an arbitrarily small constant epsilon > 0. In this paper we devise a drastically faster deterministic edge-coloring algorithm. Specifically, our algorithm computes an O(Delta)-edge-coloring in O(Delta^{epsilon}) + log-star n time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta) + log-star n time. This result improves the previous state-of-the-art {exponentially} in a wide range of Delta, specifically, for 2^{Omega(\log-star n)} \leq Delta \leq polylog(n). In addition, for small values of Delta our deterministic algorithm outperforms all the existing {randomized} algorithms for this problem. On our way to these results we study the {vertex-coloring} problem on the family of graphs with bounded {neighborhood independence}. This is a large family, which strictly includes line graphs of r-hypergraphs for any r = O(1), and graphs of bounded growth. We devise a very fast deterministic algorithm for vertex-coloring graphs with bounded neighborhood independence. This algorithm directly gives rise to our edge-coloring algorithms, which apply to {general} graphs. Our main technical contribution is a subroutine that computes an O(Delta/p)-defective p-vertex coloring of graphs with bounded neighborhood independence in O(p^2) + \log-star n time, for a parameter p, 1 \leq p \leq Delta.
Barenboim Leonid
Elkin Michael
No associations
LandOfFree
Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-608890