Statistics – Machine Learning
Scientific paper
2009-10-29
Statistics
Machine Learning
36 pages, 8 figures
Scientific paper
We propose a method to infer causal structures containing both discrete and continuous variables. The idea is to select causal hypotheses for which the conditional density of every variable, given its causes, becomes smooth. We define a family of smooth densities and conditional densities by second order exponential models, i.e., by maximizing conditional entropy subject to first and second statistical moments. If some of the variables take only values in proper subsets of R^n, these conditionals can induce different families of joint distributions even for Markov-equivalent graphs. We consider the case of one binary and one real-valued variable where the method can distinguish between cause and effect. Using this example, we describe that sometimes a causal hypothesis must be rejected because P(effect|cause) and P(cause) share algorithmic information (which is untypical if they are chosen independently). This way, our method is in the same spirit as faithfulness-based causal inference because it also rejects non-generic mutual adjustments among DAG-parameters.
Janzing Dominik
Schoelkopf Bernhard
Sun Xiaohai
No associations
LandOfFree
Distinguishing Cause and Effect via Second Order Exponential Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Distinguishing Cause and Effect via Second Order Exponential Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distinguishing Cause and Effect via Second Order Exponential Models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-404421