Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2011-02-03
J. Phys. A: Math. Theor. 44 365203(2011)
Nonlinear Sciences
Exactly Solvable and Integrable Systems
37 pages, 8 figures
Scientific paper
10.1088/1751-8113/44/36/365203
We study the Lagrange formalism of the (rational) Calogero-Moser (CM) system, both in discrete time as well as in continuous time, as a first example of a Lagrange 1-form structure in the sense of the recent paper [19]. The discrete-time model of the CM system was established some time ago arising as a pole-reduction of a semi-discrete version of the KP equation, and was shown to lead to an exactly integrable correspondence (multivalued map). In this paper we present the full KP solution based on the commutativity of the discrete-time flows in the two discrete KP variables. The compatibility of the corresponding Lax matrices is shown to lead directly to the relevant closure relation on the level of the Lagrangians. Performing successive continuum limits on both the level of the KP equation as well as of the CM system, we establish the proper Lagrange 1-form structure for the continuum case of the CM model. We use the example of the three-particle case to elucidate the implementation of the novel least-action principle, which was presented in [19], for the simpler case of Lagrange 1-forms.
Lobb Sarah
Nijhoff Frank
Yoo-Kong Sikarin
No associations
LandOfFree
Discrete-time Calogero-Moser system and Lagrangian 1-form structure does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Discrete-time Calogero-Moser system and Lagrangian 1-form structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discrete-time Calogero-Moser system and Lagrangian 1-form structure will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-427702