Mathematics – Analysis of PDEs
Scientific paper
2009-01-07
Mathematics
Analysis of PDEs
Scientific paper
We consider a class of doubly nonlinear degenerate hyperbolic-parabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omn\`es \cite{DomOmnes}) for these problems in two and three spatial dimensions. We derive a series of discrete duality formulas and entropy dissipation inequalities for the schemes. We establish the existence of solutions to the discrete problems, and prove that sequences of approximate solutions generated by the discrete duality finite volume schemes converge strongly to the entropy solution of the continuous problem. The proof revolves around some basic a priori estimates, the discrete duality features, Minty-Browder type arguments, and "hyperbolic" $L^\infty$ weak-$\star$ compactness arguments (i.e., propagation of compactness along the lines of Tartar, DiPerna, ...). Our results cover the case of non-Lipschitz nonlinearities.
Andreïanov Boris
Bendahmane Mostafa
Karlsen Kenneth H.
No associations
LandOfFree
Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-720378