Astronomy and Astrophysics – Astrophysics
Scientific paper
2004-04-02
Astrophys.J. 610 (2004) 303-312
Astronomy and Astrophysics
Astrophysics
Contains 21 pages and 5 figures. Due to space limitations in astroph, figures 1, 3 & 5 are submitted as separate .jpg files. F
Scientific paper
10.1086/421517
We present a new infrared extinction study of Globule 2, the most opaque molecular cloud core in the Coalsack complex. Using deep near-infrared imaging observations obtained with the ESO NTT we are able to examine the structure of the globule in significantly greater detail than previously possible. We find the most prominent structural feature of this globule to be a strong central ring of dust column density which was not evident in lower resolution studies of this cloud. This ring represents a region of high density and pressure that is likely a transient structure. For a spherical cloud geometry the ring would correspond to a dense inner shell of high pressure that could not be in dynamical equilibrium with its surroundings since there appear to be no sources of pressure in the central regions of the cloud that could support the shell against gravity and prevent its inward implosion. The timescale for the inward collapse of the ring would be less than 2 x 10^5 years, suggesting that this globule is in an extremely early stage of evolution, and perhaps caught in the process of forming a centrally condensed dense core or Bok globule. Outside its central regions the globule displays a well-behaved density profile whose shape is very similar to that of a stable Bonnor-Ebert sphere. Using SEST we also obtained a C18O spectrum toward the center of the cloud. The CO observation indicates that the globule is a gravitationally bound object. Analysis of the CO line profile reveals significant non-thermal gas motions likely due to turbulence. As a whole the globule may be evolving to a global state of quasi-static dynamical equilibrium in which thermal and turbulent pressure balance gravity.
Alves Joao F.
Crews Lionel J.
Huard Tracy L.
Lada Charles J.
No associations
LandOfFree
Discovery of a Dusty Ring in the Coalsack: A Dense Core Caught in the Act of Formation? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Discovery of a Dusty Ring in the Coalsack: A Dense Core Caught in the Act of Formation?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discovery of a Dusty Ring in the Coalsack: A Dense Core Caught in the Act of Formation? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-144773