Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997dps....29.1814a&link_type=abstract
American Astronomical Society, DPS meeting #29, #18.14; Bulletin of the American Astronomical Society, Vol. 29, p.1004
Astronomy and Astrophysics
Astronomy
1
Scientific paper
The circumplanetary flow of SO_2 gas on Io is modeled using the direct simulation Monte Carlo (DSMC) method. The gas sublimates from SO_2 frost in the warm subsolar region and flows towards the colder night side where it condenses. The acceleration of the flow due to vapor pressure difference and the cooling due to expansion causes the flow to become supersonic. A boundary layer grows along the surface until the gas passes through a standing shock about 70 degrees away from the subsolar point. Unlike earlier work (Ingersoll et al. 1985, 1989 and Wong and Johnson 1995) which assumed continuum flow, our simulation correctly models the rarefied effects which become increasingly important as the gas expands away from the subsolar point. A second, non-condensible gas is also added to simulate the possible effects of quantities of H_2S or O_2 in the atmosphere. The presence of the non-condensible gas can generate either a hydraulic jump condition or a blanketing effect. Parameter studies showing condensation distribution as a function of subsolar temperature and background gas strength will be presented. The DSMC method solves fully viscous and compressible, non-LTE, rarefied flow problems by statistically extrapolating from the motions and collisions of a relatively small number of representative molecules. This work has been supported by NASA's Planetary Atmospheres Program.
Austin Victor J.
Goldstein David B.
No associations
LandOfFree
Direct Numerical Simulation of Circumplanetary Winds on Io does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Direct Numerical Simulation of Circumplanetary Winds on Io, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct Numerical Simulation of Circumplanetary Winds on Io will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1188218