Mathematics – Quantum Algebra
Scientific paper
2007-05-23
Mathematics
Quantum Algebra
27 pages; introduction rewritten
Scientific paper
In this paper, we study the primitive ideals of quantum algebras supporting a rational torus action. We first prove a quantum analogue of a Theorem of Dixmier; namely, we show that the Gelfand-Kirillov dimension of primitive factors of various quantum algebras is always even. Next we give a combinatorial criterion for a prime ideal that is invariant under the torus action to be primitive. We use this criterion to obtain a formula for the number of primitive ideals in the algebra of $2\times n$ quantum matrices that are invariant under the action of the torus. Roughly speaking, this can be thought of as giving an enumeration of the points that are invariant under the induced action of the torus in the ``variety of $2\times n$ quantum matrices''.
Bell James
Launois Stephane
Nguyen Nam
No associations
LandOfFree
Dimension and enumeration of primitive ideals in quantum algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dimension and enumeration of primitive ideals in quantum algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dimension and enumeration of primitive ideals in quantum algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-402320