Astronomy and Astrophysics – Astronomy
Scientific paper
Sep 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000geoji.142..801b&link_type=abstract
Geophysical Journal International, Volume 142, Issue 3, pp. 801-811.
Astronomy and Astrophysics
Astronomy
10
Deformation, Satellite, Geodesy, Topography, Volcanic Structure
Scientific paper
Digital photogrammetry and kinematic global positioning system (GPS) techniques are investigated and compared over a volcanic area as operational approaches to map the topography and monitor surface displacements. The use of terrestrial and airborne GPS to support the photogrammetric survey allowed for operational and processing time reduction without loss of accuracy. A digital elevation model (DEM) is obtained from the processing of the high-resolution digital imagery survey, which provides detailed information over a large area. The internal accuracy of the derived DEM has been verified by the comparison of two sets of data obtained from imagery acquired in different epochs; the observed root-mean-square error of residuals ranges from a few centimetres to 15cm depending on the morphological features. Kinematic and pseudo-kinematic GPS surveys are performed to derive accurate 3-D coordinates at monumented benchmarks and accurate elevation profiles along footpaths. The average repeatability of the GPS measurements on benchmarks is 1cm for measurement durations of 2-3min. The standard deviation of interpolated vertical coordinates obtained at the crossings of kinematic GPS profiles is 4.3cm. The high quality of these GPS coordinates justifies their use also for the validation of the photogrammetric DEM. A comparison of 6000 common points provides a standard deviation of residuals of 18cm. The results show that the deformation pattern of a volcanic area can be rapidly and accurately monitored even in the absence of geodetic benchmarks. The integration of aerial photogrammetry with GPS kinematic surveys may be considered as an optimal approach for deriving high-resolution mapping products to be used in support of studies of volcanic dynamics.
Baldi Paolo
Bonvalot Sylvain
Briole Pierre
Marsella M.
No associations
LandOfFree
Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1385005