Astronomy and Astrophysics – Astrophysics
Scientific paper
Oct 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002a%26a...393..693l&link_type=abstract
Astronomy and Astrophysics, v.393, p.693-701 (2002)
Astronomy and Astrophysics
Astrophysics
Conduction, Shock Waves, Hydrodynamics, Stars: Atmospheres
Scientific paper
Large gradients of the temperature and ionization degree in shock waves lead to diffusion of ions with respect to neutral atoms. In order to take into account this phenomenon, we modify the fluid dynamics equations of the shock wave model described by Fadeyev & Gillet (\cite{Fadeyev2000}). The principal goal of our study was to determine the reactive thermal conductivity. We obtained the non-LTE equation for the reactive thermal conductivity for the nonequilibrium two-temperature gas consisting of heavy particles (ions and neutral atoms) and free electrons. For the single temperature gas in LTE our expressions become the same as those given by Devoto (\cite{Devoto1967}) and Nowak & Ulmschneider (\cite{Nowak1977}). Finally, we discuss the importance of the heat flux induced by the reactive conductivity for shock waves propagating through hydrogen gas with typical properties for atmospheres of pulsating stars (10-7 gm cm-3 <= rho <= 10-10 gm cm-3 and 3000 K <= T <= 8000 K ). The reactive conductivity could be efficient behind the shock front, at the end of the thermalization zone when ionization process brutally occurs. When the gas is very dense, the reactive heat flux is of the same order of magnitude as the classical electronic heat flux.
Gillet Denis
Le Coroller Herve
No associations
LandOfFree
Diffusion velocity and reactive thermal conductivity for shock waves propagating in the hydrogen gas does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Diffusion velocity and reactive thermal conductivity for shock waves propagating in the hydrogen gas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diffusion velocity and reactive thermal conductivity for shock waves propagating in the hydrogen gas will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1659847