Astronomy and Astrophysics – Astrophysics
Scientific paper
2002-07-25
Astronomy and Astrophysics
Astrophysics
6 pages, 8 figures, Astronomy and Astrophysics (subm.)
Scientific paper
10.1051/0004-6361:20021809
We measure the eddy viscosity in the outermost layers of the solar convection zone by comparing the rotation law computed with the Reynolds stress resulting from f-plane simulations of the angular momentum transport in rotating convection with the observed differential rotation pattern. The simulations lead to a negative vertical and a positive horizontal angular momentum transport. The consequence is a subrotation of the outermost layers, as it is indeed indicated both by helioseismology and the observed rotation rates of sunspots. In order to reproduce the observed gradient of the rotation rate a value of about 1.5 x 10^{13} cm/s for the eddy viscosity is necessary. Comparison with the magnetic eddy diffusivity derived from the sunspot decay yields a surprisingly large magnetic Prandtl number of 150 for the supergranulation layer. The negative gradient of the rotation rate also drives a surface meridional flow towards the poles, in agreement with the results from Doppler measurements. The successful reproduction of the abnormally positive horizontal cross correlation (on the northern hemisphere) observed for bipolar groups then provides an independent test for the resulting eddy viscosity.
Chan Kwan-Leung
Küker Manfred
Rudiger Günther
No associations
LandOfFree
Differential rotation and meridional flow in the solar supergranulation layer: Measuring the eddy viscosity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Differential rotation and meridional flow in the solar supergranulation layer: Measuring the eddy viscosity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Differential rotation and meridional flow in the solar supergranulation layer: Measuring the eddy viscosity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-226221