Computer Science – Computational Complexity
Scientific paper
2010-02-07
Computer Science
Computational Complexity
Scientific paper
In this paper we study algebraic branching programs (ABPs) with restrictions on the order and the number of reads of variables in the program. Given a permutation $\pi$ of $n$ variables, for a $\pi$-ordered ABP ($\pi$-OABP), for any directed path $p$ from source to sink, a variable can appear at most once on $p$, and the order in which variables appear on $p$ must respect $\pi$. An ABP $A$ is said to be of read $r$, if any variable appears at most $r$ times in $A$. Our main result pertains to the identity testing problem. Over any field $F$ and in the black-box model, i.e. given only query access to the polynomial, we have the following result: read $r$ $\pi$-OABP computable polynomials can be tested in $\DTIME[2^{O(r\log r \cdot \log^2 n \log\log n)}]$. Our next set of results investigates the computational limitations of OABPs. It is shown that any OABP computing the determinant or permanent requires size $\Omega(2^n/n)$ and read $\Omega(2^n/n^2)$. We give a multilinear polynomial $p$ in $2n+1$ variables over some specifically selected field $G$, such that any OABP computing $p$ must read some variable at least $2^n$ times. We show that the elementary symmetric polynomial of degree $r$ in $n$ variables can be computed by a size $O(rn)$ read $r$ OABP, but not by a read $(r-1)$ OABP, for any $0 < 2r-1 \leq n$. Finally, we give an example of a polynomial $p$ and two variables orders $\pi \neq \pi'$, such that $p$ can be computed by a read-once $\pi$-OABP, but where any $\pi'$-OABP computing $p$ must read some variable at least $2^n$
Jansen Maurice
Qiao Youming
Sarma Jayalal
No associations
LandOfFree
Deterministic Black-Box Identity Testing $π$-Ordered Algebraic Branching Programs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Deterministic Black-Box Identity Testing $π$-Ordered Algebraic Branching Programs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deterministic Black-Box Identity Testing $π$-Ordered Algebraic Branching Programs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-307407