Other
Scientific paper
Oct 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgre..11510005c&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue E10, CiteID E10005
Other
17
Planetary Sciences: Solar System Objects: Titan, Planetary Sciences: Solar System Objects: Saturnian Satellites, Planetary Sciences: Solid Surface Planets: Surface Materials And Properties, Planetary Sciences: Solid Surface Planets: Composition (1060, 3672), Planetary Sciences: Solid Surface Planets: Ices
Scientific paper
We report the identification of compounds on Titan's surface by spatially resolved imaging spectroscopy methods through Titan's atmosphere, and set upper limits to other organic compounds. We present evidence for surface deposits of solid benzene (C6H6), solid and/or liquid ethane (C2H6), or methane (CH4), and clouds of hydrogen cyanide (HCN) aerosols using diagnostic spectral features in data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). Cyanoacetylene (2-propynenitrile, IUPAC nomenclature, HC3N) is indicated in spectra of some bright regions, but the spectral resolution of VIMS is insufficient to make a unique identification although it is a closer match to the feature previously attributed to CO2. We identify benzene, an aromatic hydrocarbon, in larger abundances than expected by some models. Acetylene (C2H2), expected to be more abundant on Titan according to some models than benzene, is not detected. Solid acetonitrile (CH3CN) or other nitriles might be candidates for matching other spectral features in some Titan spectra. An as yet unidentified absorption at 5.01-μm indicates that yet another compound exists on Titan's surface. We place upper limits for liquid methane and ethane in some locations on Titan and find local areas consistent with millimeter path lengths. Except for potential lakes in the southern and northern polar regions, most of Titan appears “dry.” Finally, we find there is little evidence for exposed water ice on the surface. Water ice, if present, must be covered with organic compounds to the depth probed by 1-5-μm photons: a few millimeters to centimeters.
Baines Kevin Hays
Barnes Jason W.
Brown Robert Hanbury
Buratti Bonnie Jean
Clark Roger Nelson
No associations
LandOfFree
Detection and mapping of hydrocarbon deposits on Titan does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Detection and mapping of hydrocarbon deposits on Titan, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection and mapping of hydrocarbon deposits on Titan will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1233943