Computer Science – Artificial Intelligence
Scientific paper
2010-06-18
Computer Science
Artificial Intelligence
26 pages, 4 tables, 2 figures, International Journal of Unconventional Computing
Scientific paper
Artificial Immune Systems have been successfully applied to a number of problem domains including fault tolerance and data mining, but have been shown to scale poorly when applied to computer intrusion detec- tion despite the fact that the biological immune system is a very effective anomaly detector. This may be because AIS algorithms have previously been based on the adaptive immune system and biologically-naive mod- els. This paper focuses on describing and testing a more complex and biologically-authentic AIS model, inspired by the interactions between the innate and adaptive immune systems. Its performance on a realistic process anomaly detection problem is shown to be better than standard AIS methods (negative-selection), policy-based anomaly detection methods (systrace), and an alternative innate AIS approach (the DCA). In addition, it is shown that runtime information can be used in combination with system call information to enhance detection capability.
Aickelin Uwe
Twycross Jamie
Whitbrook Amanda
No associations
LandOfFree
Detecting Anomalous Process Behaviour using Second Generation Artificial Immune Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Detecting Anomalous Process Behaviour using Second Generation Artificial Immune Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detecting Anomalous Process Behaviour using Second Generation Artificial Immune Systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-260419