Mathematics – Statistics Theory
Scientific paper
2011-12-29
Mathematics
Statistics Theory
Scientific paper
We consider a situation where the state of a system is represented by a real-valued vector. Under normal circumstances, the vector is zero, while an event manifests as non-zero entries in this vector, possibly few. Our interest is in the design of algorithms that can reliably detect events (i.e., test whether the vector is zero or not) with the least amount of information. We place ourselves in a situation, now common in the signal processing literature, where information about the vector comes in the form of noisy linear measurements. We derive information bounds in an active learning setup and exhibit some simple near-optimal algorithms. In particular, our results show that the task of detection within this setting is at once much easier, simpler and different than the tasks of estimation and support recovery.
No associations
LandOfFree
Detecting a Vector Based on Linear Measurements does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Detecting a Vector Based on Linear Measurements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detecting a Vector Based on Linear Measurements will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-728352