Des equations de Dirac et de Schrodinger pour la transformation de Fourier

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, with a summary in English. One or two things added

Scientific paper

10.1016/S1631-073X(03)00223-1

Dyson a associe aux determinants de Fredholm des noyaux de Dirichlet pairs (resp. impairs) une equation de Schrodinger sur un demi-axe et a employe les methodes du scattering inverse de Gel'fand-Levitan et de Marchenko, en tandem, pour etudier l'asymptotique de ces determinants. Nous avons propose suite a notre mise-au-jour de l'operateur conducteur de chercher a realiser la transformation de Fourier elle-meme comme un scattering, et nous obtenons ici dans ce but deux systemes de Dirac sur l'axe reel tout entier et qui sont associes intrinsequement, respectivement, aux transformations en cosinus et en sinus. (Dyson has associated with the Fredholm determinants of the even (resp. odd) Dirichlet kernels a Schrodinger equation on the half-axis and has used, in tandem, the Gel'fand-Levitan and Marchenko methods of inverse scattering theory to study the asymptotics of these determinants. We have proposed following our unearthing of the conductor operator to seek to realize the Fourier transform itself as a scattering, and we obtain here to this end two Dirac systems on the entire real axis which are intrinsically associated, respectively, to the cosine and to the sine transforms.)

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Des equations de Dirac et de Schrodinger pour la transformation de Fourier does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Des equations de Dirac et de Schrodinger pour la transformation de Fourier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Des equations de Dirac et de Schrodinger pour la transformation de Fourier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-73242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.