Mathematics – Functional Analysis
Scientific paper
2010-07-19
Mathematics
Functional Analysis
Scientific paper
Let $B$ be a Banach $A-bimodule$ and let $n\geq 0$. We investigate the relationships between some cohomological groups of $A$, that is, if the topological center of the left module action $\pi_\ell:A\times B\rightarrow B$ of $A^{(2n)}$ on $B^{(2n)}$ is $B^{(2n)}$ and $H^1(A^{(2n+2)},B^{(2n+2)})=0$, then we have $H^1(A,B^{(2n)})=0$, and we find the relationships between cohomological groups such as $H^1(A,B^{(n+2)})$ and $H^1(A,B^{(n)})$, spacial $H^1(A,B^*)$ and $H^1(A,B^{(2n+1)})$. We obtain some results in Connes-amenability of Banach algebras, and so for every compact group $G$, we conclude that $H^1_{w^*}(L^\infty(G)^*,L^\infty(G)^{**})=0$. Let $G$ be an amenable locally compact group. Then there is a Banach $L^1(G)-bimodule$ such as $(L^\infty(G),.)$ such that $Z^1(L^1(G),L^\infty(G))=\{L_{f}:~f\in L^\infty(G)\}.$ We also obtain some conclusions in the Arens regularity of module actions and weak amenability of Banach algebras. We introduce some new concepts as $left-weak^*-to-weak$ convergence property [$=Lw^*wc-$property] and $right-weak^*-to-weak$ convergence property [$=Rw^*wc-$property] with respect to $A$ and we show that if $A^*$ and $A^{**}$, respectively, have $Rw^*wc-$property and $Lw^*wc-$property and $A^{**}$ is weakly amenable, then $A$ is weakly amenable. We also show to relations between a derivation $D:A\rightarrow A^*$ and this new concepts.
No associations
LandOfFree
Derivations And Cohomological Groups Of Banach Algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Derivations And Cohomological Groups Of Banach Algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Derivations And Cohomological Groups Of Banach Algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-62067