Mathematics – Analysis of PDEs
Scientific paper
2012-01-20
Mathematics
Analysis of PDEs
Scientific paper
Starting from three-dimensional elasticity we derive a rod theory for biphase materials with a prescribed dislocation at the interface. The stored energy density is assumed to be non-negative and to vanish on a set consisting of two copies of SO(3). First, we rigorously justify the assumption of dislocations at the interface. Then, we consider the typical scaling of multiphase materials and we perform an asymptotic study of the rescaled energy, as the diameter of the rod goes to zero, in the framework of $\Gamma$-convergence.
Müller Stefan
Palombaro Mariapia
No associations
LandOfFree
Derivation of a rod theory for biphase materials with dislocations at the interface does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Derivation of a rod theory for biphase materials with dislocations at the interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Derivation of a rod theory for biphase materials with dislocations at the interface will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-320928