Mathematics – Differential Geometry
Scientific paper
2010-06-08
Mathematics
Differential Geometry
24 pages
Scientific paper
Let $(Y, d)$ be a Gromov-Hausdorff limit of $n$-dimensional closed shrinking K\"ahler-Ricci solitons with uniformly bounded volumes and Futaki invariants. We prove that off a closed subset of codimension at least 4, Y is a smooth manifold satisfying a shrinking K\"ahler-Ricci soliton equation. A similar convergence result for K\"ahler-Ricci flow of positive first Chern class is also obtained.
Tian Gang
Zhang Zhenlei
No associations
LandOfFree
Degeneration of Kähler-Ricci solitons does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Degeneration of Kähler-Ricci solitons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Degeneration of Kähler-Ricci solitons will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-30461