Deconfinement transition in rotating compact stars

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 pages, 9 figures; A&A accepted

Scientific paper

Using the formalism of general relativity for axially symmetric gravitational fields and their sources - rotating compact stars - a perturbation theory with respect to angular velocity is developed and physical quantities such as mass, shape, momentum of inertia and total energy of the star are defined. The change of the internal structure of the star due to rotation has been investigated and the different contributions to the moment of inertia have been evaluated separately. Numerical solutions have been performed using a two-flavor model equation of state describing the deconfinement phase transition as constrained by the conservation of total baryon number and electric charge. During the spin down evolution of the rotating neutron star, below critical values of angular velocity a quark matter core can appear which might be detected as a characteristic signal in the pulsar timing. Within the spin-down scenario due to magnetic dipole radiation it is shown that the deviation of the braking index from $n=3$ could signal not only the occurrence but also the size of a quark core in the pulsar. A new scenario is proposed where, due to mass accretion onto the rapidly rotating compact star, a spin-down to spin-up transition might signal a deconfinement transition in its interior.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Deconfinement transition in rotating compact stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Deconfinement transition in rotating compact stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deconfinement transition in rotating compact stars will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-479351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.