Debris disc candidates in systems with transiting planets

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted for publication in MNRAS Letters

Scientific paper

Debris discs are known to exist around many planet-host stars, but no debris dust has been found so far in systems with transiting planets. Using publicly available catalogues, we searched for infrared excesses in such systems. In the recently published Wide-Field Infrared Survey Explorer (WISE) catalogue, we found 52 stars with transiting planets. Two systems with one transiting "hot Jupiter" each, TrES-2 and XO-5, exhibit small excesses both at 12 and 22 microns at a > 3 sigma level. Provided that one or both of these detections are real, the frequency of warm excesses in systems with transiting planets of 2-4 % is comparable to that around solar-type stars probed at similar wavelengths with Spitzer's MIPS and IRS instruments. Modelling suggests that the observed excesses would stem from dust rings with radii of several AU. The inferred amount of dust is close to the maximum expected theoretically from a collisional cascade in asteroid belt analogues. If confirmed, the presence of debris discs in systems with transiting planets may put important constraints onto formation and migration scenarios of hot Jupiters.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Debris disc candidates in systems with transiting planets does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Debris disc candidates in systems with transiting planets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Debris disc candidates in systems with transiting planets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-196536

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.