Computer Science – Computational Geometry
Scientific paper
2005-12-23
Computer Science
Computational Geometry
15 pages, 5 figures. Full version of paper appearing in LATIN 2006
Scientific paper
We consider preprocessing a set S of n points in the plane that are in convex position into a data structure supporting queries of the following form: given a point q and a directed line l in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q subject to being to the left of line l. We present two data structures for this problem. The first data structure uses O(n^{1+epsilon}) space and preprocessing time, and answers queries in O(2^{1/epsilon} log n) time. The second data structure uses O(n log^3 n) space and polynomial preprocessing time, and answers queries in O(log n) time. These are the first solutions to the problem with O(log n) query time and o(n^2) space. In the process of developing the second data structure, we develop a new representation of nearest-point and farthest-point Voronoi diagrams of points in convex position. This representation supports insertion of new points in counterclockwise order using only O(log n) amortized pointer changes, subject to supporting O(log n)-time point-location queries, even though every such update may make Theta(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n) pointer changes per operation while keeping O(log n)-time point-location queries.
Aronov Boris
Bose Prosenjit
Demaine Erik D.
Gudmundsson Joachim
Iacono John
No associations
LandOfFree
Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-696858