Computer Science – Information Retrieval
Scientific paper
2012-02-22
International Journal of Innovative Technology and Creative Engineering, Vol.1 No.12 (2011) 13-19
Computer Science
Information Retrieval
7 pages, 2 figures. arXiv admin note: text overlap with arXiv:1201.3417 and arXiv:1201.3418
Scientific paper
Knowledge Discovery and Data Mining (KDD) is a multidisciplinary area focusing upon methodologies for extracting useful knowledge from data and there are several useful KDD tools to extracting the knowledge. This knowledge can be used to increase the quality of education. But educational institution does not use any knowledge discovery process approach on these data. Data mining can be used for decision making in educational system. A decision tree classifier is one of the most widely used supervised learning methods used for data exploration based on divide & conquer technique. This paper discusses use of decision trees in educational data mining. Decision tree algorithms are applied on students' past performance data to generate the model and this model can be used to predict the students' performance. It helps earlier in identifying the dropouts and students who need special attention and allow the teacher to provide appropriate advising/counseling.
Bharadwaj Brijesh
Pal Saurabh
Yadav Surjeet Kumar
No associations
LandOfFree
Data Mining Applications: A comparative Study for Predicting Student's performance does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Data Mining Applications: A comparative Study for Predicting Student's performance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data Mining Applications: A comparative Study for Predicting Student's performance will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-414644