Nonlinear Sciences – Pattern Formation and Solitons
Scientific paper
2012-02-06
Nonlinear Sciences
Pattern Formation and Solitons
5 pages, 4 figures
Scientific paper
We consider the nonlinear analogues of Parity-Time ($\mathcal{PT}$) symmetric linear systems exhibiting defocusing nonlinearities. We study the ground state and excited states (dark solitons and vortices) of the system and report the following remarkable features. For relatively weak values of the parameter $\varepsilon$ controlling the strength of the $\mathcal{PT}$-symmetric potential, excited states undergo (analytically tractable) spontaneous symmetry breaking; as $\varepsilon$ is further increased, the ground state and first excited state, as well as branches of higher multi-soliton (multi-vortex) states, collide in pairs and disappear in blue-sky bifurcations, in a way which is strongly reminiscent of the linear $\mathcal{PT}$-phase transition ---thus termed the nonlinear $\mathcal{PT}$-phase transition. Past this critical point, initialization of, e.g., the former ground state leads to spontaneously emerging "soliton (vortex) sprinklers".
Achilleos V.
Carretero-González Ricardo
Frantzeskakis Dimitri J.
Kevrekidis Panagiotis G.
No associations
LandOfFree
Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-578477