Astronomy and Astrophysics – Astrophysics
Scientific paper
Jul 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002a%26a...390..369l&link_type=abstract
Astronomy and Astrophysics, v.390, p.369-381 (2002)
Astronomy and Astrophysics
Astrophysics
52
Astrochemistry, Molecular Processes, Ism: Molecules
Scientific paper
We present the basic features of a steady state chemical model of Photon Dominated Regions (PDR), where the deuterium chemistry is explicitly introduced. The model is an extension of a previous PDR model (Abgrall et al. \cite{abg.92}; Le Bourlot et al. \cite{lebou.93}; Le Bourlot \cite{lb.00}) in which the microscopic processes relative to HD have been incorporated. The J-dependent photodissociation probabilities have been calculated and included in the statistical equilibrium of the rotational levels of HD where the latest collision molecular data are also introduced. The thermal balance is calculated from the equilibrium between the different heating and cooling processes. We introduce a standard model of density nH = 500 cm-3 embedded in the Interstellar Standard Radiation Field (ISRF) from which we derive the main properties of HD in PDR. The D/HD transition does not depend only on the density, radiation field but also on the chemical processes and especially on the dust formation efficiency. In standard radiation field conditions, the D/HD transition occurs in a narrow range of visual extinctions as long as density is less than 1000 cm-3 and HD is formed through the D+ + H2 reaction. At higher densities a logarithmic dependence of the location of the transition is derived. The model is applied both to ultraviolet absorption observations from the ground rotational state of HD performed in diffuse and translucent clouds and infrared emission detectable at high densities and for high ultraviolet radiation fields coming from the bright surrounding stars.
Le Bourlot Jacques
Le Petit Franck
Roueff Evelyne
No associations
LandOfFree
D/HD transition in Photon Dominated Regions (PDR) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with D/HD transition in Photon Dominated Regions (PDR), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and D/HD transition in Photon Dominated Regions (PDR) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-959196