Mathematics – Combinatorics
Scientific paper
2007-12-17
Mathematics
Combinatorics
12 pages
Scientific paper
A $k$-dimensional box is the cartesian product $R_1 \times R_2 \times ... \times R_k$ where each $R_i$ is a closed interval on the real line. The {\it boxicity} of a graph $G$, denoted as $box(G)$, is the minimum integer $k$ such that $G$ is the intersection graph of a collection of $k$-dimensional boxes. A unit cube in $k$-dimensional space or a $k$-cube is defined as the cartesian product $R_1 \times R_2 \times ... \times R_k$ where each $R_i$ is a closed interval on the real line of the form $[a_i, a_{i}+1]$. The {\it cubicity} of $G$, denoted as $cub(G)$, is the minimum $k$ such that $G$ is the intersection graph of a collection of $k$-cubes. In this paper we show that $cub(G) \leq t + \left \lceil \log (n - t)\right\rceil - 1$ and $box(G) \leq \left \lfloor\frac{t}{2}\right\rfloor + 1$, where $t$ is the cardinality of the minimum vertex cover of $G$ and $n$ is the number of vertices of $G$. We also show the tightness of these upper bounds. F. S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph $G$, $box(G) \leq \left \lfloor\frac{n}{2} \right \rfloor$, where $n$ is the number of vertices of $G$, and this bound is tight. We show that if $G$ is a bipartite graph then $box(G) \leq \left \lceil\frac{n}{4} \right\rceil$ and this bound is tight. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to $\frac{n}{4}$. Interestingly, if boxicity is very close to $\frac{n}{2}$, then chromatic number also has to be very high. In particular, we show that if $box(G) = \frac{n}{2} - s$, $s \geq 0$, then $\chi(G) \geq \frac{n}{2s+2}$, where $\chi(G)$ is the chromatic number of $G$.
Chandran Sunil L.
Das Anita
Shah Chintan
No associations
LandOfFree
Cubicity, Boxicity and Vertex Cover does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cubicity, Boxicity and Vertex Cover, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cubicity, Boxicity and Vertex Cover will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-116115