Crossed modules and the homotopy 2-type of a free loop space

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5 pages version 2: 9 pages; more references and reorganised with more detail on the classifying space version 3: corrections a

Scientific paper

The question was asked by Niranjan Ramachandran: how to describe the fundamental groupoid of LX, the free loop space of a space X? We give an answer by assuming X to be the classifying space of a crossed module over a group, and then describe completely a crossed module over a groupoid determining the homotopy 2-type of LX. The method requires detailed information on the monoidal closed structure on the category of crossed complexes.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Crossed modules and the homotopy 2-type of a free loop space does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Crossed modules and the homotopy 2-type of a free loop space, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crossed modules and the homotopy 2-type of a free loop space will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-501178

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.