Mathematics – Number Theory
Scientific paper
2010-02-23
Mathematics
Number Theory
24 pages
Scientific paper
According to the Birch and Swinnerton-Dyer conjectures, if A/Q is an abelian variety then its L-function must capture substantial part of the arithmetic properties of A. The smallest number field L where A has all its endomorphisms defined must also have a role. This article deals with the relationship between these two objects in the specific case of modular abelian varieties A_f/Q associated to weight 2 newforms for the modular group Gamma_1(N). Specifically, our goal is to relate the order of L(A_f/Q,s) at s = 1 with Euler products cropped by the set of primes that split completely in L. The results we obtain for the case when f has complex multiplication are complete, while in the absence of CM, our results depend on the rate of convergence in Sato-Tate distributions.
Gonzalez Jesús J.
Jimenez J. J.
Lario Joan-C.
No associations
LandOfFree
Cropping Euler factors of modular L-functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cropping Euler factors of modular L-functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cropping Euler factors of modular L-functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-170681