Statistics – Applications
Scientific paper
2007-08-31
Annals of Applied Statistics 2007, Vol. 1, No. 1, 36-65
Statistics
Applications
Published at http://dx.doi.org/10.1214/07-AOAS103 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Ins
Scientific paper
10.1214/07-AOAS103
Cis-regulatory modules (CRMs) composed of multiple transcription factor binding sites (TFBSs) control gene expression in eukaryotic genomes. Comparative genomic studies have shown that these regulatory elements are more conserved across species due to evolutionary constraints. We propose a statistical method to combine module structure and cross-species orthology in de novo motif discovery. We use a hidden Markov model (HMM) to capture the module structure in each species and couple these HMMs through multiple-species alignment. Evolutionary models are incorporated to consider correlated structures among aligned sequence positions across different species. Based on our model, we develop a Markov chain Monte Carlo approach, MultiModule, to discover CRMs and their component motifs simultaneously in groups of orthologous sequences from multiple species. Our method is tested on both simulated and biological data sets in mammals and Drosophila, where significant improvement over other motif and module discovery methods is observed.
Wong Wing Hung
Zhou Qing
No associations
LandOfFree
Coupling hidden Markov models for the discovery of Cis-regulatory modules in multiple species does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Coupling hidden Markov models for the discovery of Cis-regulatory modules in multiple species, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coupling hidden Markov models for the discovery of Cis-regulatory modules in multiple species will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-618173