Mathematics – Number Theory
Scientific paper
2007-05-10
Mathematics
Number Theory
Scientific paper
Let k be a finite field of odd characteristic. We find a closed formula for the number of k-isomorphism classes of pointed, and non-pointed, hyperelliptic curves of genus g over k, admitting a Koblitz model. These numbers are expressed as a polynomial in the cardinality q of k, with integer coefficients (for pointed curves) and rational coefficients (for non-pointed curves). The coefficients depend on g and the set of divisors of q-1 and q+1. These formulas show that the number of hyperelliptic curves of genus g suitable (in principle) of cryptographic applications is asymptotically (1-e^{-1})2q^{2g-1}, and not 2q^{2g-1} as it was believed. The curves of genus g=2 and g=3 are more resistant to the attacks to the DLP; for these values of g the number of curves is respectively (91/72)q^3+O(q^2) and (3641/2880)q^5+O(q^4).
Demirkiran Cevahir
Nart Enric
No associations
LandOfFree
Counting hyperelliptic curves that admit a Koblitz model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Counting hyperelliptic curves that admit a Koblitz model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Counting hyperelliptic curves that admit a Koblitz model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-600442