Biology – Quantitative Biology – Neurons and Cognition
Scientific paper
2009-05-10
Biology
Quantitative Biology
Neurons and Cognition
Scientific paper
10.1007/s10827-009-0184-0
Linear-Nonlinear-Poisson (LNP) models are a popular and powerful tool for describing encoding (stimulus-response) transformations by single sensory as well as motor neurons. Recently, there has been rising interest in the second- and higher-order correlation structure of neural spike trains, and how it may be related to specific encoding relationships. The distortion of signal correlations as they are transformed through particular LNP models is predictable and in some cases analytically tractable and invertible. Here, we propose that LNP encoding models can potentially be identified strictly from the correlation transformations they induce, and develop a computational method for identifying minimum-phase single-neuron temporal kernels under white and colored- random Gaussian excitation. Unlike reverse-correlation or maximum-likelihood, correlation-distortion based identification does not require the simultaneous observation of stimulus-response pairs - only their respective second order statistics. Although in principle filter kernels are not necessarily minimum-phase, and only their spectral amplitude can be uniquely determined from output correlations, we show that in practice this method provides excellent estimates of kernels from a range of parametric models of neural systems. We conclude by discussing how this approach could potentially enable neural models to be estimated from a much wider variety of experimental conditions and systems, and its limitations.
Krumin Michael
Shimron Avner
Shoham Shy
No associations
LandOfFree
Correlation-distortion based identification of Linear-Nonlinear-Poisson models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Correlation-distortion based identification of Linear-Nonlinear-Poisson models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Correlation-distortion based identification of Linear-Nonlinear-Poisson models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-570169