Computer Science – Performance
Scientific paper
Nov 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006esasp1306..207p&link_type=abstract
"Proceedings of "The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding" (ESA SP-1306). Editors: M. Fridlun
Computer Science
Performance
Scientific paper
LESIA, in close cooperation with CNES, DLR and IWF, is responsible for the tests and validation of the CoRoT instrument digital process unit which is made up of the BEX and DPU assembly. The main part of the work has consisted in validating the DPU software and in testing the BEX/DPU coupling. This work took more than two years due to the central role of the software tested and its technical complexity. The first task, in the validation process, was to carry out the acceptance tests of the DPU software. These tests consisted in checking each of the 325 requirements identified in the URD (User Requirements Document) and were played in a configuration using the DPU coupled to a BEX simulator. During the acceptance tests, all the transversal functionalities of the DPU software, like the TC/TM management, the state machine management, the BEX driving, the system monitoring or the maintenance functionalities were checked in depth. The functionalities associated with the seismology and exoplanetology processing, like the loading of window and mask descriptors or the configuration of the service execution parameters, were also exhaustively tested. After having validated the DPU software against the user requirements using a BEX simulator, the following step consisted in coupling the DPU and the BEX in order to check that the formed unit worked correctly and met the performance requirements. These tests were conducted in two phases: the first one was devoted to the functional aspects and the tests of interface, the second one to the performance aspects. The performance tests were based on the use of the DPU software scientific services and on the use of full images representative of a realistic sky as inputs. These tests were also based on the use of a reference set of windows and parameters, which was provided by the scientific team and was representative, in terms of load and complexity, of the one that could be used during the observation mode of the CoRoT instrument. Theywere played in a configuration using either a BCC simulator or a real BCC coupled to a video simulator, to feed the BEX/DPU unit. The validation of the scientific algorithms was conducted in parallel to the phase of the BEX/DPU coupling tests. The objective of this phase was to check that the algorithms implemented in the scientific services of the DPU software were in good conformity with those specified in the URD and that the obtained numerical precision corresponded to that expected. Forty cases of tests were defined covering the fine and rough angular error measurement processing, the rejection of the brilliant pixels, the subtraction of the offset and the sky background, the photometry algorithms, the SAA handling and reference image management. For each test case, the LESIA scientific team produced, by simulation, using the model instrument, the dynamic data files and the parameter sets allowing to feed the DPU on the one hand, and, on the other hand, a model of the onboard software. These data files correspond to FITS images (black windows, star windows, offset windows) containing more or less disturbances and making it possible to test the DPU software in dynamic mode over durations of up to 48 hours. To perform the test and validation activities of the CoRoT instrument digital process unit, a set of software testing tools was developed by LESIA (Software Ground Support Equipment, hereafter "SGSE"). Thanks to their versatility and modularity, these software testing tools were actually used during all the activities of integration, tests and validation of the instrument and its subsystems CoRoTCase and CoRoTCam. The CoRoT SGSE were specified, designed and developed by LESIA. The objective was to have a software system allowing the users (validation team of the onboard software, instrument integration team, etc.) to remotely control and monitor the whole instrument or only one of the subsystems of the instrument like the DPU coupled to a simulator BEX or the BEX/DPU unit coupled to a BCC simulator. The idea was to be able to interact in real time with the system under test by driving the various EGSE, but also to play test procedures implemented as scripts organized into libraries, to record the telemetries and housekeeping data in a database, and to be able to carry out post-mortem analyses.
No associations
LandOfFree
CoRoTlog does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with CoRoTlog, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CoRoTlog will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1314444