Cops and robbers in random graphs

Mathematics – Combinatorics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages. J. Comb. Theory B, submitted

Scientific paper

We consider the pursuit and evasion game on finite, connected, undirected graphs known as cops and robbers. Meyniel conjectured that for every graph on n vertices a rootish number of cops can win the game. We prove that this holds up to a log(n) factor for random graphs G(n,p) if p is not very small, and this is close to be tight unless the graph is very dense. We analyze the area-defending strategy (used by Aigner in case of planar graphs) and show examples where it can not be too efficient.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Cops and robbers in random graphs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Cops and robbers in random graphs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cops and robbers in random graphs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-65936

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.