Mathematics – Numerical Analysis
Scientific paper
2007-12-21
Mathematics
Numerical Analysis
31 pages
Scientific paper
We propose a new numerical approach to compute nonclassical solutions to hyperbolic conservation laws. The class of finite difference schemes presented here is fully conservative and keep nonclassical shock waves as sharp interfaces, contrary to standard finite difference schemes. The main challenge is to achieve, at the discretization level, a consistency property with respect to a prescribed kinetic relation. The latter is required for the selection of physically meaningful nonclassical shocks. Our method is based on a reconstruction technique performed in each computational cell that may contain a nonclassical shock. To validate this approach, we establish several consistency and stability properties, and we perform careful numerical experiments. The convergence of the algorithm toward the physically meaningful solutions selected by a kinetic relation is demonstrated numerically for several test cases, including concave-convex as well as convex-concave flux-functions.
Boutin Benjamin
Chalons Christophe
Lagoutière Frédéric
LeFloch Philippe G.
No associations
LandOfFree
Convergent and conservative schemes for nonclassical solutions based on kinetic relations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Convergent and conservative schemes for nonclassical solutions based on kinetic relations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Convergent and conservative schemes for nonclassical solutions based on kinetic relations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-697163