Nonlinear Sciences – Pattern Formation and Solitons
Scientific paper
2006-06-19
SIAM J. Appl. Math. 68, 292-310 (2007)
Nonlinear Sciences
Pattern Formation and Solitons
19 pages, 7 figures, accepted for SIAM J. Appl. Math
Scientific paper
10.1137/070683908
We study the shape stability of disks moving in an external Laplacian field in two dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele-Shaw cell with a regularization of kinetic undercooling type, namely a mixed Dirichlet-Neumann boundary condition for the Laplacian field on the moving boundary. Using conformal mapping techniques, linear stability analysis of the uniformly translating disk is recast into a single PDE which is exactly solvable for certain values of the regularization parameter. We concentrate on the physically most interesting exactly solvable and non-trivial case. We show that the circular solutions are linearly stable against smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form, a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed circle occurs along a unique slow manifold as time $t\to\infty$. Smooth temporal eigenfunctions cannot be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does span the function space of perturbations. We believe that the observed behaviour of a convectively stabilized circle for a certain value of the regularization parameter is generic for other shapes and parameter values. Our analytical results are illustrated by figures of some typical solutions.
Ebert Ute
Meulenbroek Bernard
Schaefer Lothar
No associations
LandOfFree
Convective stabilization of a Laplacian moving boundary problem with kinetic undercooling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Convective stabilization of a Laplacian moving boundary problem with kinetic undercooling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Convective stabilization of a Laplacian moving boundary problem with kinetic undercooling will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-305024