Computer Science – Performance
Scientific paper
Sep 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004spie.5495..104g&link_type=abstract
Astronomical Structures and Mechanisms Technology. Edited by Antebi, Joseph; Lemke, Dietrich. Proceedings of the SPIE, Volume 54
Computer Science
Performance
Scientific paper
The paper presents the analysis results (in terms of settling time, bandwidth, and servo error in wind disturbances) of four control systems designed for the Large Millimeter Telescope (LMT). The first system, called PP, consists of the proportional and integral (PI) controllers in the rate and position loops, and is widely used in the antenna and radiotelesope industry. The analysis shows that the PP control system performance is remarkably good when compared to similar control systems applied to typical antennas. This performance is achieved because the LMT structure is exceptionally rigid, however, it does not meet the stringent LMT pointing requirements. The second system, called PL, consists of the PI controller in the rate loop, and the Linear-Quadratic-Gaussian (LQG) controller in the position loop. This type of controller is implemented in the NASA Deep Space Network antennas, where pointing accuracy is twice that of PP control system. The third system, called LP, consists of the LQG controller in the rate loop, and the proportional-integral-derivative (PID) controller in the position loop. This type of loop has not been yet implemented at known antennas or radiotelescopes, but the analysis shows that its pointing accuracy is the ten times better than PP control system. The fourth system, called LL, consists of the LQG controller in both the rate loop, and the position loop. It is the best of the four, with accuracy 250 better than the PP system, thus is worth further investigations, to identify implementation challenges for the telescopes of high pointing requirements.
Gawronski Wodek
Souccar Kamal
No associations
LandOfFree
Control systems of the Large Millimeter Telescope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Control systems of the Large Millimeter Telescope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control systems of the Large Millimeter Telescope will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1822270