Mathematics – Geometric Topology
Scientific paper
2008-12-10
Mathematics
Geometric Topology
20 pages
Scientific paper
In some scientific fields, a scaling is able to modify the topology of an observed object. Our goal in the present work is to introduce a new formalism adapted to the mathematical representation of this kind of phenomenon. To this end, we introduce a new metric structure - the galactic spaces - which depends on an ordered field extension of R. Moreover, some natural transformations of the category of galactic spaces, the contractions, are of particular interest: they generalize usual homotheties, they have a ratio which may be an infinitesimal, they are able to modify the topology and they satisfy a nice composition rule. With the help of nonstandard extensions we can associate to any metric space an infinite family of galactic spaces; lastly, we study some limit properties of this family.
No associations
LandOfFree
Contraction of a Generalized Metric Structure does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Contraction of a Generalized Metric Structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Contraction of a Generalized Metric Structure will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-527521