Mathematics – Analysis of PDEs
Scientific paper
2011-04-05
Mathematics
Analysis of PDEs
44 pages, 5 figures
Scientific paper
We consider compact convex hypersurfaces contracting by functions of their curvature. Under the mean curvature flow, uniformly convex smooth initial hypersurfaces evolve to remain smooth and uniformly convex, and contract to points after finite time. The same holds if the initial data is only weakly convex or non-smooth, and the limiting shape at the final time is spherical. We provide a surprisingly large family of flows for which such results fail, by a variety of mechanisms: Uniformly convex hypersurfaces may become non-convex, and smooth ones may develop curvature singularities; even where this does not occur, non-uniformly convex regions and singular parts in the initial hypersurface may persist, including flat sides, ridges of infinite curvature, or `cylindrical' regions where some of the principal curvatures vanish; such cylindrical regions may persist even if the speed is positive, and in such cases the hypersurface may even collapse to a line segment or higher-dimensional disc rather than to a point. We provide sufficient conditions for these various disasters to occur, and by avoiding these arrive at a class of flows for which arbitrary weakly convex initial hypersurfaces immediately become smooth and uniformly convex and contract to points.
Andrews Ben
McCoy James
Zheng Yu
No associations
LandOfFree
Contracting convex hypersurfaces by curvature does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Contracting convex hypersurfaces by curvature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Contracting convex hypersurfaces by curvature will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-320918