Mathematics – Probability
Scientific paper
2005-06-13
Queueing Systems, 59 (2008), 63-86
Mathematics
Probability
Final revision; will be published as is
Scientific paper
10.1007/s11134-008-9076-7
In this paper continuity theorems are established for the number of losses during a busy period of the $M/M/1/n$ queue. We consider an $M/GI/1/n$ queueing system where the service time probability distribution, slightly different in a certain sense from the exponential distribution, is approximated by that exponential distribution. Continuity theorems are obtained in the form of one or two-sided stochastic inequalities. The paper shows how the bounds of these inequalities are changed if further assumptions, associated with specific properties of the service time distribution (precisely described in the paper), are made. Specifically, some parametric families of service time distributions are discussed, and the paper establishes uniform estimates (given for all possible values of the parameter) and local estimates (where the parameter is fixed and takes only the given value). The analysis of the paper is based on the level crossing approach and some characterization properties of the exponential distribution.
No associations
LandOfFree
Continuity theorems for the $M/M/1/n$ queueing system does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Continuity theorems for the $M/M/1/n$ queueing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuity theorems for the $M/M/1/n$ queueing system will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-649569