Constraints on Ureilite Petrogenesis and Carbon-Metal-Silicate Equilibria on the UPB

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

1

Scientific paper

The most important constraints on models of ureilite petrogenesis are 1) Ureilites have lost a basaltic complement (they are ultramafic, extremely depleted in plagiophile elements, enriched in HREE, and have negative Eu anomalies and superchondritic Ca/Al ratios). 2) Ureilites experienced long equilibration times at high T (indicated by coarse grain size, extreme homogeneity of core crystals, correlations between olivine and pyroxene compositions, and metamorphic-like textures), followed by rapid cooling (indicated by structural features of pyroxene and narrow reduction rims on olivine). 3) Ureilites are probably residues (based on mass balance) but partly crystallized from melts. 4) Ureilites are derived from a minimum of six reservoirs that were distinct in oxygen isotopic composition and did not equilibrate with one another (this is consistent with the observation that olivine and pyroxene cores do not show correlations of mg with MnO, Cr2O3, Sm/Eu or Lu/Eu). 5) There is a correlation between oxygen isotopic composition and mg ratio in ureilites. Similar correlations are observed for Allende chondrules and group means of H3-L3-LL3 chondrites (Fig. 1), and are argued to result from nebular processes [1]. 6) If graphite-metal-silicate-CO/CO2 equilibrium was established during melting, then mg ratios of ureilites were determined by depth because CCO redox reactions are strongly pressure-dependent. Cohenite-bearing metallic spherule inclusions in the silicates and euhedral shapes of large graphite crystals in low-shock ureilites have been taken as evidence of equilibrium. Olivine reduction rims, highly variable interstitial metal compositions, and a lack of correlation between mg and metal content argue against equilibrium. 7) Ureilites either lost a low melting-T metal fraction or gained a refractory-rich metal component. (they have high abundances of siderophile elements but show fractionation between [Os, Ir, W, Re] and [Ni, Ga, Ge, Au]). 8) Primordial noble gases were retained in some carbon phases. 9) Ureilites formed at ~4.55 Ga but both Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Constraints 1-4 are best met if ureilites are partial melt residues produced by ~25% equilibrium partial melting on an oxygen-isotopically heterogeneous parent body in >=6 distinct melting zones. If there was no global magma ocean, km-sized melting zones would not equilibrate oxygen with one another in 10 m.y. Constraints 5 and 6 appear difficult to reconcile. If the UPB inherited a nebular oxygen isotope-mg correlation how could this correlation have survived partial melting? If the melting zones all experienced approximately the same degree of melting (Mn/Mg, Cr/Mg, and HRE provide evidence for this), and silicate equilibria determined mg, then the original correlation may simply have shifted to higher mg, consistent with the position of the ureilite trend relative to the Allende trends (Fig. 1). However, if mg was depth-dependent then it is unlikely that any oxygen isotope-mg correlation would remain. Also, noble gases in carbon would be lost (violating constraint 8) during carbon redox reactions. All constraints would be better met if graphite-metal-silicate-CO/CO2 equilibrium was not established during partial melting. If graphite was primary but a CO/CO2 fluid phase was not present then there would have been no pressure/depth dependence of fO(sub)2. As long as the pressure was sufficiently high (~100-200 bars) to stabilize the most ferroan ureilite (Fo 76) then the more magnesian ureilites would have been stable in the presence of graphite and metal. On the other hand, constraints 7, 8, and 9 could be neatly met if most of the carbon was not primary but a carbon-metal-noble gas assemblage was added as a late component to the ultramafic rocks. The cohenite-bearing metallic spherules are rare and tiny (10-50 micrometers) compared to interstitial metal (mm-sized irregular grains). They appear to have been droplets of immiscible, hypereutectic Fe(Ni)-C liquids that were trapped by crystallizing silicates. In contrast, the interstitial metal and graphite show no evidence of having been a liquid Fe-C alloy and their confinement to grain boundaries and reduction rims is consistent with late addition. Goodrich and Berkley (2) argued that the spherules were carbon-saturated at 1200-1225 degrees C and therefore that the silicate liquid must have contained graphite. However, in the Fe-C system the stable graphite liquidus is much steeper than the metastable cohenite liquidus, and although these alloys were cohenite-saturated, they were not graphite-saturated. Hence, the silicate magma probably did not contain graphite and carbon was not the dominant control on fO(sub)2. Thus, it may be possible to reconcile the main constraints on ureilite petrogenesis without high pressures. [1] R.N. Clayton & T.K. Mayeda (1988] GCA 52, 1313. [2] C.A. Goodrich & J.L. Berkely (1986) GCA 50, 681.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Constraints on Ureilite Petrogenesis and Carbon-Metal-Silicate Equilibria on the UPB does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Constraints on Ureilite Petrogenesis and Carbon-Metal-Silicate Equilibria on the UPB, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constraints on Ureilite Petrogenesis and Carbon-Metal-Silicate Equilibria on the UPB will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1209466

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.