Constraints on Mercury’s surface composition from MESSENGER and ground-based spectroscopy

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6

Scientific paper

The composition and chemistry of Mercury’s regolith has been calculated from MESSENGER MASCS 0.3-1.3 μm spectra from the first flyby, using an implementation of Hapke’s radiative transfer-based photometric model for light scattering in semi-transparent porous media, and a linear spectral mixing algorithm. We combine this investigation with linear spectral fitting results from mid-infrared spectra and compare derived oxide abundances with mercurian formation models and lunar samples. Hapke modeling results indicate a regolith that is optically dominated by finely comminuted particles with average area weighted grain size near 20 μm. Mercury shows lunar-style space weathering, with maturation-produced microphase iron present at ˜0.065 wt.% abundance, with only small variations between mature and immature sites, the amount of which is unable to explain Mercury’s low brightness relative to the Moon. The average modal mineralogies for the flyby 1 spectra derived from Hapke modeling are 35-70% Na-rich plagioclase or orthoclase, up to 30% Mg-rich clinopyroxene, <5% Mg-rich orthopyroxene, minute olivine, ˜20-45% low-Fe, low-Ti agglutinitic glass, and <10% of one or more lunar-like opaque minerals. Mercurian average oxide abundances derived from Hapke models and mid-infrared linear fitting include 40-50 wt.% SiO2, 10-35 wt.% Al2O3, 1-8 wt.% FeO, and <25 wt.% TiO2; the inferred rock type is basalt. Lunar-like opaques or glasses with high Fe and/or Ti abundances cannot on their own, or in combination, explain Mercury’s low brightness. The linear mixing results indicate the presence of clinopyroxenes that contain up to 21 wt.% MnO and the presence of a Mn-rich hedenbergite. Mn in M1 crystalline lattice sites of hedenbergite suppresses the strong 1 and 2 μm crystal field absorption bands and may thus act as a strong darkening agent on Mercury. Also, one or more of thermally darkened silicates, Fe-poor opaques and matured glasses, or Mercury-unique Ostwald-ripened microphase iron nickel may lower the albedo. A major part of the total microphase iron present in Mercury’s regolith is likely derived from FeO that is not intrinsic to the crust but has been subsequently delivered by exogenic sources.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Constraints on Mercury’s surface composition from MESSENGER and ground-based spectroscopy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Constraints on Mercury’s surface composition from MESSENGER and ground-based spectroscopy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constraints on Mercury’s surface composition from MESSENGER and ground-based spectroscopy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1496545

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.