Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2012-04-11
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
25 pages, 8 figures, accepted by ApJ
Scientific paper
Giant X-ray cavities lie in some active galactic nuclei (AGNs) locating in central galaxies of clusters, most of these cavities are thought to be inflated by jets of AGNs. The jets can be either powered by rotating black holes or the accretion disks surrounding black holes, or both. In this work, we choose the most energetic cavity, MS 0735+7421, with stored energy ~ 10^62 erg, to constrain the jet formation mechanisms and the evolution of the central massive black hole in this source. The bolometric luminosity of the AGN in this cavity is ~ 10^(-5) L_Edd, however, the mean power of the jet required to inflate the cavity is estimated as ~ 0.02 L_Edd, which implies that the source has experienced strong outbursts previously. During outbursts, the jet power and the mass accretion rate should be significantly higher than its present values. We construct an accretion disk model, in which the angular momentum and energy carried away by jets is properly included, to calculate the spin and mass evolution of the massive black hole. In our calculations, different jet formation mechanisms are employed, and we find that the jets generated with the Blandford-Znajek (BZ) mechanism are unable to produce the giant cavity with ~ 10^62 erg in this source. Only the jets accelerated with the combination of the Blandford-Payne (BP) and BZ mechanisms can successfully inflate such a giant cavity, if the magnetic pressure is close to equipartition with the total (radiation+gas) pressure of the accretion disk. For dynamo generated magnetic field in the disk, such an energetic giant cavity can be inflated by the magnetically driven jets only if the initial black hole spin parameter a_0 > 0.95. Our calculations show that the final spin parameter a of the black hole is always ~ 0:9 - 0.998 for all the computational examples which can provide sufficient energy for the cavity of MS 0735+7421.
Cao Xinwu
li Shuang-Liang
No associations
LandOfFree
Constraints on jet formation mechanisms with the most energetic giant outbursts in MS 0735+7421 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Constraints on jet formation mechanisms with the most energetic giant outbursts in MS 0735+7421, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constraints on jet formation mechanisms with the most energetic giant outbursts in MS 0735+7421 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-716809