Astronomy and Astrophysics – Astrophysics
Scientific paper
2003-04-23
Astrophys.J.593:258-271,2003
Astronomy and Astrophysics
Astrophysics
16 pages, accepted by ApJ
Scientific paper
10.1086/376502
We obtain constraints on the slope of a universal stellar initial mass function (IMF) over a range of cosmic star-formation histories (SFH) using z=0.1 luminosity densities in the range from 0.2 to 2.2 microns. The age-IMF degeneracy of integrated spectra of stellar populations can be broken for the Universe as a whole by using direct measurements of (relative) cosmic SFH from high-redshift observations. These have only marginal dependence on uncertainties in the IMF, whereas, fitting to local luminosity densities depends strongly on both cosmic SFH and the IMF. We fit to these measurements using population synthesis and find the best-fit IMF power-law slope to be Gamma=1.15+-0.2 (0.5 < M/M_solar < 120). This slope is in good agreement with the Salpeter IMF slope (Gamma=1.35). A strong upper limit of Gamma<1.7 is obtained which effectively rules out the Scalo IMF due to its too low fraction of high-mass stars. This upper limit is at the 99.7% confidence level if we assume a closed-box chemical evolution scenario and 95% if we assume constant solar metallicity. Fitting to the H-alpha line luminosity density, we obtain a best-fit IMF slope in good agreement with that derived from broadband measurements. Marginalizing over cosmic SFH and IMF slope, we obtain (95% conf. ranges, h=1): omega_stars = 1.1-2.0 E-3 for the stellar mass density; rho_sfr = 0.7-4.1 E-2 M_solar/yr/Mpc^3 for the star-formation rate density, and; rho_L = 1.2-1.7 E+35 W/Mpc^3 for the bolometric, attenuated, stellar, luminosity density (0.09-5 microns). Comparing this total stellar emission with an estimate of the total dust emission implies a relatively modest average attenuation in the UV (<=1 magnitude at 0.2 microns).
Baldry Ivan K.
Glazebrook Kark
No associations
LandOfFree
Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-518624