Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2011-04-05
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
9 pages; Accepted by Astronomy & Astrophysics
Scientific paper
Studying the physical conditions in circumstellar disks is a crucial step toward understanding planet formation. Of particular interest is the case of HD 100546, a Herbig Be star that presents a gap within the first 13 AU of its protoplanetary disk, that may originate in the dynamical interactions of a forming planet. We gathered a large amount of new interferometric data using the AMBER/VLTI instrument in the H- and K-bands to spatially resolve the warm inner disk and constrain its structure. Then, combining these measurements with photometric observations, we analyze the circumstellar environment of HD 100546 in the light of a passive disk model based on 3D Monte-Carlo radiative transfer. Finally, we use hydrodynamical simulations of gap formation by planets to predict the radial surface density profile of the disk and test the hypothesis of ongoing planet formation. The SED and the NIR interferometric data are adequately reproduced by our model. We show that the H- and K-band emissions are coming mostly from the inner edge of the internal dust disk, located near 0.24 AU from the star, i.e., at the dust sublimation radius in our model. We directly measure an inclination of $33^{\circ} \pm 11^{\circ}$ and a position angle of $140^{\circ} \pm 16^{\circ}$ for the inner disk. This is similar to the values found for the outer disk ($i \simeq 42^{\circ}$, $PA \simeq 145^{\circ}$), suggesting that both disks may be coplanar. We finally show that 1 to 8 Jupiter mass planets located at $\sim 8$ AU from the star would have enough time to create the gap and the required surface density jump of three orders of magnitude between the inner and outer disk. However, no information on the amount of matter left in the gap is available, which precludes us from setting precise limits on the planet mass, for now.
Benisty Myriam
Hofmann Karl Heinrich
Martin-Zaidi C.
Massi Fabrizio
Menard Franccois
No associations
LandOfFree
Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-321756