Computer Science
Scientific paper
Jun 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009mss..confewg13j&link_type=abstract
"International Symposium On Molecular Spectroscopy, 64th Meeting, Held 22-26 June, 2009 at Ohio State University. http://molspec
Computer Science
Infrared/Raman
Scientific paper
Recently, double resonance spectroscopy has been utilized to elucidate the conformational preferences of natural peptide mimetics. These studies demonstrated the power of double resonance methods and highlighted the ability of even short peptide mimetics to form a variety of intramolecular hydrogen bonded architectures. Currently, we have undertaken a detailed study of a model γ^{2}-peptide using double resonance spectroscopy. Conformation-specific IR spectra in the amide NH and amide I stretch spectral regions of Ac-γ^{2}-hPhe-NHMe provide evidence for three unique conformational isomers in a jet-cooled environment. The results of DFT and MP2 calculations will be presented as a basis for assignment of the experimentally resolved conformers. Two conformers form nine atom, intramolecular hydrogen bonded rings, which differ by the position of the aromatic ring relative to the peptide backbone. The third conformer does not contain intramolecular hydrogen bonding, but forms an intramolecular, amide-amide stacking structural motif, which when analyzed with the quantum theory of Atoms In Molecules is shown to contain an interaction between the carbon atom of the acetylated N-terminal amide and the nitrogen atom of the methylated C-terminal amide. In an effort to quantitatively assess the competition between hydrogen bonded and amide-amide stacked conformers, mass-resolved, infrared-population transfer spectroscopy was developed, where the IR and molecular beams are counter-propagated allowing for a re-cooling step prior to detection via resonant two-photon ionization spectroscopy. Using this method the fractional abundances of each conformer were experimentally determined.
W. Chin, F. Piuzzi, I. Dimicoli, and M. Mons, PCCP, 2006, 8, 1033.
E. E. Baquero, W. H. James III, S. H. Choi, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2008, 130, 4784.
Buchanan Evan G.
Gellman Samuel H.
Guo Li
James William H. James III
Müller Christian W.
No associations
LandOfFree
Conformation-Specific and Mass-Resolved Infrared-Population Transfer Spectroscopy of the Model γ^{2}-PEPTIDE Ac-γ^{2}-hPhe-NHMe: Evidence for the Presence of Intramolecular Amide-Amide Stacking Interactions. does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Conformation-Specific and Mass-Resolved Infrared-Population Transfer Spectroscopy of the Model γ^{2}-PEPTIDE Ac-γ^{2}-hPhe-NHMe: Evidence for the Presence of Intramolecular Amide-Amide Stacking Interactions., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conformation-Specific and Mass-Resolved Infrared-Population Transfer Spectroscopy of the Model γ^{2}-PEPTIDE Ac-γ^{2}-hPhe-NHMe: Evidence for the Presence of Intramolecular Amide-Amide Stacking Interactions. will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1642963