Statistics – Applications
Scientific paper
Aug 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009spie.7446e..15b&link_type=abstract
Wavelets XIII. Edited by Goyal, Vivek K.; Papadakis, Manos; van de Ville, Dimitri. Proceedings of the SPIE, Volume 7446, pp. 74
Statistics
Applications
1
Scientific paper
Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression. In a previous study1 we gave new insights into the use of Compressed Sensing (CS) in the scope of astronomical data analysis. More specifically, we showed how CS is flexible enough to account for particular observational strategies such as raster scans. This kind of CS data fusion concept led to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments onboard the Herschel spacecraft which will launched in late 2008/early 2009. In this paper, we extend this work by showing how CS can be effectively used to jointly decode multiple observations at the level of map making. This allows us to directly estimate large areas of the sky from one or several raster scans. Beyond the particular but important Herschel example, we strongly believe that CS can be applied to a wider range of applications such as in earth science and remote sensing where dealing with multiple redundant observations is common place. Simple but illustrative examples are given that show the effectiveness of CS when decoding is made from multiple redundant observations.
Bobin Jerome
Starck Jean-Luc
No associations
LandOfFree
Compressed sensing in astronomy and remote sensing: a data fusion perspective does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Compressed sensing in astronomy and remote sensing: a data fusion perspective, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compressed sensing in astronomy and remote sensing: a data fusion perspective will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1304355