Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-04-12
Mon.Not.Roy.Astron.Soc.378:785-800,2007
Astronomy and Astrophysics
Astrophysics
18 pages (mn2e LaTeX), 14 figures, 5 tables, Accepted for publication in MNRAS
Scientific paper
10.1111/j.1365-2966.2007.11840.x
(Abridged) We use 3D SPH calculations with higher resolution, as well as with more realistic viscosity and sound-speed prescriptions than previous work to examine the eccentric instability which underlies the superhump phenomenon in semi-detached binaries. We illustrate the importance of the two-armed spiral mode in the generation of superhumps. Differential motions in the fluid disc cause converging flows which lead to strong spiral shocks once each superhump cycle. The dissipation associated with these shocks powers the superhump. We compare 2D and 3D results, and conclude that 3D simulations are necessary to faithfully simulate the disc dynamics. We ran our simulations for unprecedented durations, so that an eccentric equilibrium is established except at high mass ratios where the growth rate of the instability is very low. Our improved simulations give a closer match to the observed relationship between superhump period excess and binary mass ratio than previous numerical work. The observed black hole X-ray transient superhumpers appear to have systematically lower disc precession rates than the cataclysmic variables. This could be due to higher disc temperatures and thicknesses. The modulation in total viscous dissipation on the superhump period is overwhelmingly from the region of the disc within the 3:1 resonance radius. As the eccentric instability develops, the viscous torques are enhanced, and the disc consequently adjusts to a new equilibrium state, as suggested in the thermal-tidal instability model. We quantify this enhancement in the viscosity, which is ~10 per cent for q=0.08. We characterise the eccentricity distributions in our accretion discs, and show that the entire body of the disc partakes in the eccentricity.
Foulkes Stephen B.
Haswell Carole A.
Murray James R.
Smith Amanda J.
Truss Michael R.
No associations
LandOfFree
Comprehensive simulations of superhumps does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Comprehensive simulations of superhumps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comprehensive simulations of superhumps will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-147563