Astronomy and Astrophysics – Astrophysics
Scientific paper
2004-10-07
Astrophys.J.637:415-426,2006
Astronomy and Astrophysics
Astrophysics
13 pages, 8 figures. Final version
Scientific paper
10.1086/498224
With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not yet lead to successful explosions, while 2D models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multi-D convection treatment for unstable layers. On the other hand there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e. most strongly the yields of Fe-group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino scattering cross sections and alternatively, parameterized variations are applied to the neutrino absorption cross sections on nucleons in the ``gain region''. We find that both measures lead to similar results, causing explosions and a Ye>0.5 in the innermost ejected layers, due to the combined effect of a short weak interaction time scale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. We include all weak interactions (electron and positron capture, beta-decay, neutrino and antineutrino capture on nuclei, and neutrino and antineutrino capture on nucleons) and present first nucleosynthesis results for these innermost ejected layers to discuss how they improve predictions for Fe-group nuclei. The proton-rich environment results in enhanced abundances of 45Sc, 49Ti, and 64Zn as requested by chemical evolution studies and observations of low metallicity stars as well as appreciable production of nuclei in the mass range up to A=80.
Bravo Eduardo
Fröhlich Carla
Hauser Paul
Hix William Raphael
Langanke Karlheinz
No associations
LandOfFree
Composition of the Innermost Core Collapse Supernova Ejecta does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Composition of the Innermost Core Collapse Supernova Ejecta, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition of the Innermost Core Collapse Supernova Ejecta will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-315426